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Abstract
The magnetic properties of the isotropic manganites R1−xXx MnO3 are studied in the
paramagnetic regime using the Green’s function method. The Curie–Weiss and critical
temperatures, � and Tc, are obtained within the random phase approximation, as well as the
high-temperature susceptibility. Our results are in agreement with other theoretical and
experimental results.

1. Introduction

Since the discovery of colossal magnetoresistance (CMR) [1, 2]
in manganese-based compounds R1−xXx MnO3 (R = trivalent
rare earth, X = divalent alkaline ion), their ferromagnetic to
paramagnetic phase transition has been widely studied. Man-
ganites have prompted a burst of research activity in the last
decade, as they show not only very rich physics but also pos-
sible technological applications. Some of the most prominent
conductive and magnetic features of the manganites arise be-
cause of the presence of Mn4+ ions in addition to Mn3+ ions.
In the doping range 0.2 < x < 0.5, these manganites undergo
a paramagnetic insulator to ferromagnetic metal phase transi-
tion upon cooling, leading to a sharp resistivity peak near the
Curie temperature Tc [3].

The dynamics of these systems is mainly governed by the
Mn ions, whose average valence changes with x between 4+
and 3+. The Mn4+ ions have non-compensated spins in the
t32g configuration that give rise to localized S = 3/2 spins. On
the other hand, the Mn3+ ions have an extra eg electron (with
s = 1/2) that couples ferromagnetically to the t2g spins. The eg

electrons tend to be itinerant and lower their kinetic energy by
polarizing with ferromagnetic character the localized t2g spins.
This process is known as the double exchange (DE) interaction,
which was proposed by Zener [4], and developed by Anderson
and Hasegawa [5] and de Gennes [6]. In CMR materials it
competes with the classical superexchange interaction between
Mn ions [7].

Recently, a quantum form of the Hamiltonian [8] for
the DE system, based on the results of the Anderson and
Hasegawas semiclassical treatment [5], has been presented.
However, in real CMR materials there are a large number of
ions and electrons. The hopping of electrons is unavoidably
affected by other degrees of freedom, e.g. lattice effect, as
pointed out by Millis et al [9]. Since the lattice degree of
freedom does not need to be added to explain CMR, the
Curie temperature Tc obtained from the semiclassical [5] and
quantum [8] treatment is much higher than the experimental
Tc [9, 10].

It is well known that the ferromagnetic interaction
between Mn ions present in CMR perovskites is commonly
ascribed to the DE interaction. In order to well describe
the magnetic properties of CMR, a simplified model was
proposed for this interaction [11, 12]. This model indicates
that the hopping of electrons between Mn ions connects
them, forming high spin magnetic clusters that include the
itinerant electron. The effective ferromagnetic coupling
of the Mn ions resulting from this model gives rise to a
magnetic susceptibility [12] that may be described by an
isotropic Heisenberg-like interaction between Mn3+–Mn4+
pairs. High-temperature susceptibility in CMR manganites has
been studied [7, 13] in the paramagnetic regime by the Weiss
mean-field approximation (WMFA) [14], in terms of this kind
of effective ferromagnetic Heisenberg-like interaction.

However, since the spin-wave contribution has been
omitted, the paramagnetic properties obtained in [13, 7] are

0953-8984/09/146004+05$30.00 © 2009 IOP Publishing Ltd Printed in the UK1

http://dx.doi.org/10.1088/0953-8984/21/14/146004
mailto:newbayren@163.com
http://stacks.iop.org/JPhysCM/21/146004


J. Phys.: Condens. Matter 21 (2009) 146004 Y Chen et al

the mean-field type results. In this paper, the Green’s function
method within the random phase approximation (RPA) [15], is
used to study the paramagnetic properties affected by the spin
wave. The Curie–Weiss and critical temperatures, � and Tc,
are obtained by the Callen method [16, 17], as well as the zero-
field susceptibility χ . Our results for Tc and χ are in agreement
with the other theoretical and experimental results [10, 13].

The paper is organized as follows. In section 2, the
formalisms of Green’s theory are described, and the basic self-
consistent equations are obtained. The analytical results of the
susceptibility are presented in section 3. Section 4 contains the
discussions and conclusions.

2. Model

In this paper we will apply Green’s function method to the
manganites R1−xXx MnO3 in the paramagnetic regime. The
Hamiltonian for R1−xXx MnO3 may be described [11–13] by
the three-dimensional mixed-spin Heisenberg model

H = −2J
∑

〈i, j〉
si · Sj − μBgh

(
∑

i

sz
i +

∑

j

Sz
j

)
, (1)

where si = (sx
i , sy

i , sz
i ) and Si = (Sx

i , Sy
i , Sz

i ) are the spin
(s, S) operators of Mn4+ and Mn3+ species at site i, j, with
s = 3/2 and S = 2, respectively. 〈i, j〉 runs over all possible
nearest-neighbor Mn3+–Mn4+ pairs. J is the nearest-neighbor
exchange interaction. The magnetic field h is applied along the
z axis. μB and g are the Bohr magneton and the Landé factor,
respectively.

In order to calculate the magnetic properties of this model,
we introduce the retarded Green’s functions as

〈〈A+
i (t); eaBz

j B−
j 〉〉 = −ı�(t)〈[A+

i (t), eaBz
j B−

j ]〉, (2)

where A, B denote s, S operators, respectively. A±
i are the

spin raising and lowering operators, which are defined by
A±

i = Ax
i ± ı Ay

i for A = s, S, respectively. In equation (2)
〈Q(t)〉 is defined by

〈Q(t)〉 = 〈eı H t Qe−ı H t 〉 ≡ Tr[Q(t)e−H/(κBT )]
Tr[e−H/(κBT )] ,

with κB for the Boltzmann’s constant. �(t) is the step function,
and a is the Callen parameter [16].

The equations of motion for these Green’s functions
follow

ı
d

dt
〈〈A+

i (t); eaBz
j B−

j 〉〉 = δ(t)〈[A+
i ; eaBz

j B−
j ]〉

+ 〈〈[A+
i (t), H ]; eaBz

j B−
j 〉〉, (3)

in a straightforward fashion, which are given by, respectively

ı
d

dt
〈〈s+

i (t); easz
j s−

j 〉〉 = δ(t)δi jθs(a) + gμBh〈〈s+
i (t); easz

j s−
j 〉〉

+ 2J
∑

ρ

[〈〈s+
i (t)Sz

i+ρ(t) − sz
i (t)S+

i+ρ(t); easz
j s−

j 〉〉], (4)

ı
d

dt
〈〈S+

i (t); easz
j s−

j 〉〉 = gμBh〈〈S+
i (t); easz

j s−
j 〉〉

+ 2J
∑

ρ

[〈〈sz
i+ρ(t)S+

i (t) − s+
i+ρ(t)Sz

i (t); easz
j s−

j 〉〉], (5)

ı
d

dt
〈〈S+

i (t); eaSz
j S−

j 〉〉 = δ(t)δi jθS(a)

+ gμBh〈〈S+
i (t); eaSz

j S−
j 〉〉

+ 2J
∑

ρ

[〈〈sz
i+ρ(t)S+

i (t) − s+
i+ρ(t)Sz

i (t); eaSz
j S−

j 〉〉], (6)

ı
d

dt
〈〈s−

i (t); eaSz
j S−

j 〉〉 = gμBh〈〈s−
i (t); eaSz

j S−
j 〉〉

+ 2J
∑

ρ

[〈〈s+
i (t)Sz

i+ρ(t) − sz
i (t)S+

i+ρ(t); eaSz
j S−

j 〉〉], (7)

Here θA(a) = 〈[A+; ea Az
A−]〉, and θA(a = 0) = 2〈Az〉

for A = s, S, respectively. According to the RPA [15], we
approximate the higher-order Green’s functions on the right-
hand sides of the above equations. The values of 〈sz

i 〉 and
〈Sz

j 〉 are considered to be independent of their sites, and setting
〈sz

i 〉 = m1 and 〈Sz
i 〉 = m2 for any site.

After Fourier transforming these equations with respect to
the space and time variables,

〈〈A+
i (t); eaBz

j B−
j 〉〉 =

∫
dω

2π

∫

1Bz

d3k
(2π)3

eık·(i−j)−ıωt

× G AB(k, ω),

we obtain a set of algebraic equations for the transformed
Green’s functions

ωGss = θs(a) + gμBhGss + 2Jm2γ1Gss − 2Jm1γ1(k)GSs,

(8)
ωGSs = gμBhGSs + 2Jm1γ2GSs − 2Jm2γ2(k)Gss, (9)

ωGSS = θS(a) + gμBhGSS + 2Jm1γ2GSS − 2Jm2γ2(k)GsS,

(10)
ωGsS = gμBhGsS + 2Jm2γ1GsS − 2bJm1γ1(k)GsS, (11)

with

γ1(k) =
γ1∑

ρ

eık·ρ, γ2(k) =
γ2∑

ρ

eık·ρ . (12)

Here γ1 = γ1(k = 0) (or γ2 = γ2(k = 0)) is the average
number of Mn3+ (or Mn4+) ions surrounding a Mn4+ (or
Mn3+).

The solutions for the transformed Green’s functions that
are found in equations (8)–(12) can be written as

Gss(k, ω) = θs(a)(ω − Es)[(ω − ω+
k )(ω − ω−

k )]−1, (13)

GSs(k, ω) = −2Jm2γ2(k)[(ω − ω+
k )(ω − ω−

k )]−1, (14)

GSS(k, ω) = θS(a)(ω − ES)[(ω − ω+
k )(ω − ω−

k )]−1, (15)

GsS(k, ω) = −2Jm1γ1(k)[(ω − ω+
k )(ω − ω−

k )]−1, (16)

where

ω±
k = J (m1γ2 + m2γ1) + gμBh

± J
√

(m1γ2 − m2γ1)2 + 4m1m2γ1(k)γ2(k), (17)

Es = 2Jm1γ2 + gμBh, (18)

ES = 2Jm2γ1 + gμBh. (19)
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Using the spectral theorem,

〈eaBz
j B−

j A+
i (t)〉 = ı

∫ ∞

−∞
dω

2π

∫

1Bz

d3k
(2π)3

eık·(i−j)−ıωt

× G AB(k, ω + ı0+) − G AB(k, ω − ı0+)

eβω − 1
, (20)

the solutions of the correlation functions 〈ea Az
j A−

j A+
i (t)〉 can

be obtained, i.e.

〈ea Az
j A−

j A+
i (t)〉 =

∫

1Bz

d3k

(2π)3
eık·(i−j) θs(a)

ω+
k − ω−

k

×
[

(ω+
k − E A)e−ıω+

k t

eω+
k /(κBT ) − 1

− (ω−
k − E A)e−ıω−

k t

eω−
k /(κBT ) − 1

]
. (21)

Here A = s, S, respectively.
In order to obtain the sublattice magnetization m1 = 〈sz

i 〉
and m2 = 〈Sz

i 〉, it is convenient to introduce the quantity [16]

�A(a) = 〈ea Az 〉, A = s, S. (22)

Using the self-consistent condition,

〈A−
i A+

i 〉 = A(A + 1) − 〈Az
i 〉 − 〈(Az

i )
2〉, A = s, S,

the equal-time auto-correlation functions 〈ea Az
i A−

i A+
i 〉 =

θAφA and θA = 〈[A+; ea Az
A−]〉 can be written as

θAφA = 〈ea Az
i A−

i A+
i 〉 = A(A +1)�A − ∂�A

∂a
− ∂2�A

∂a2
, (23)

θA = A(A+1)(e−a−1)�A+(e−a +1)
∂�A

∂a
−(e−a −1)

∂2�A

∂a2
.

(24)
Combining equation (21) with equations (22)–(24), we obtain
a differential equation for �(a)

∂2�A

∂a2
+ (1 + φA)ea + φA

(1 + φA)ea − φA

∂�A

∂a
− A(A + 1)�A = 0. (25)

Using the Callen method [16], the solution of this differential
equation is given by

�A(a) = φ2A+1
A e−Aa − (1 + φA)2A+1e(A+1)a

[φ2A+1
A − (1 + φA)2A+1][(1 + φA)ea − φA] , (26)

where φA for A = s, S, may be written as

φs =
∫

1Bz

d3k
(2π)3

1

ω+
k − ω−

k

(
ω+

k − E1

eω+
k /(κBT ) − 1

− ω−
k − E1

eω−
k /(κBT )−1

)
,

(27)

φS =
∫

1Bz

d3k
(2π)3

1

ω+
k − ω−

k

(
ω+

k − E2

eω+
k /(κBT ) − 1

− ω−
k − E2

eω−
k /(κBT )−1

)
.

(28)
From equation (26), the sublattice magnetizations m1 =

〈sz〉 and m2 = 〈Sz〉 can be found by the differentiation

〈Az〉 = ∂�A

∂a

∣∣∣∣
a=0

, A = s, S.

The results are

m1 = (s − φs)(1 + φs)
2s+1 + (s + 1 + φs)φ

2s+1
s

(1 + φs)2s+1 − φ2s+1
s

, (29)

m2 = (S − φS)(1 + φS)
2S+1 + (S + 1 + φS)φ

2S+1
S

(1 + φS)2S+1 − φ2S+1
S

. (30)

In order to describe the paramagnetic behavior in the
manganese oxides, we consider the system as a randomly
distributed mixture of localized Mn4+ and Mn3+ ions [13, 7]
with concentrations x and 1 − x , respectively. Thus, the
magnetization for one mole R1−xXx MnO3 sample is given by

M = NA[xm1 + (1 − x)m2], (31)

which may be solved self-consistently by a set of coupled
equations (29) and (30). Here NA is the Avogadro number.

Using equation (31), the susceptibility χ = dM/dh is
given by

χ = NA[xχ1 + (1 − x)χ2], (32)

where the sublattice susceptibilities are given by χ1 = dm1/dh
and χ2 = dm2/dh, respectively.

3. Critical temperature and susceptibility

In this section, we use our solutions of the Green’s functions to
derive formulae for the critical temperature and susceptibility
in the paramagnetic phase.

Fist of all, we estimate the critical temperature Tc, which
is obtained from the limiting of equations (29) and (30). As
the magnetization M approaches zero in the absence of the
magnetic field, the equations

m1φs = s(s + 1)/3, m2φS = S(S + 1)/3 (33)

are found. These lead to

s(s + 1)

3κBTc
=

∫

1Bz

d3k
(2π)3

2Jm2
1γ2

ω+
k ω−

k

, (34)

S(S + 1)

3κBTc
=

∫

1Bz

d3k
(2π)3

2Jm2
2γ1

ω+
k ω−

k

. (35)

Inserting equation (17) into the above two equations for h = 0,
we obtain the critical temperature

Tc = 2J

3κB

√
s(s + 1)S(S + 1)γ1γ2

∫
1Bz

d3k
(2π)3

[
1 − γ1(k)γ2(k)/(γ1γ2)

]−1 . (36)

Secondly, above Tc, when the applied field h approaches
zero, the sublattice susceptibilities become χ1 = m1/h and
χ2 = m2/h. From equations (17), (29), and (30) we obtain

2s(s + 1)J

3κBT

=
∫

1Bz

d3k
(2π)3

χ̃1(χ̃1γ2 + 1)

(χ̃1γ2 + 1)(χ̃2γ1 + 1) − χ̃1χ̃2γ1(k)γ2(k)
,

(37)
2S(S + 1)J

3κBT

=
∫

1Bz

d3k
(2π)3

χ̃2(χ̃2γ1 + 1)

(χ̃1γ2 + 1)(χ̃2γ1 + 1) − χ̃1χ̃2γ1(k)γ2(k)
.

(38)
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Here χ̃1 = 2Jχ1/(gμB) and χ̃2 = 2Jχ2/(gμB).
Equations (37) and (38) yield the zero-field relationship

s(s + 1)

S(S + 1)
= χ̃1(χ̃1γ2 + 1)

χ̃2(χ̃2γ1 + 1)
. (39)

Combining equations (37) and (38) with (39), after the tedious
calculation, the zero-field sublattice susceptibilities χ1 and χ2

are given by, respectively

χ1 = (gμB)2 s(s + 1)

3κBT

×
[

1 + S(S + 1)
2Jγ1

3κBT
+ s(s + 1)S(S + 1)

4J 2 F

9(κBT )2

]
,

(40)

χ2 = (gμB)2 S(S + 1)

3κBT

×
[

1 + s(s + 1)
2Jγ2

3κBT
+ s(s + 1)S(S + 1)

4J 2 F

9(κBT )2

]

(41)

to the second order of T −3. Here F is given by

F = γ1γ2 −
∫

1Bz

d3k
(2π)3

γ1(k)γ2(k). (42)

Thus, inserting equations (40) and (41) into equation (32), the
zero-field susceptibility χ is calculated to be

χ = C

T

(
1 + �

T
+ D

�2

T 2

)
(43)

to the second order of T −3. Here the Curie constant C ,
Curie–Weiss temperature � and coefficient D are given by,
respectively,

C = NA(gμB)2[xs(s + 1) + (1 − x)S(S + 1)](3κB)−1, (44)

� = 2J

3κB

s(s + 1)S(S + 1)[xγ1 + (1 − x)γ2]
xs(s + 1) + (1 − x)S(S + 1)

, (45)

D = [xs(s + 1) + (1 − x)S(S + 1)]2 F

s(s + 1)S(S + 1)[xγ1 + (1 − x)γ2]2
, (46)

and x is the relative concentration of Mn4+ ions. This result in
equation (43) modifies χ = C(T − �)−1 [13] obtained from
WMFA. In the high-temperature region T � �, the zero-field
susceptibility approximately yields WMFA.

4. Discussions and conclusions

In this paper we have applied the Green’s function method
to the manganites R1−xXx MnO3 in the paramagnetic regime.
The Hamiltonian for R1−xXx MnO3 is described by the three-
dimensional mixed-spin Heisenberg model (1). The influence
of the spin wave on the magnetic properties is investigated by
using RPA. The Curie–Weiss and critical temperatures, � and
Tc, are obtained.

Assuming a random site occupation [13, 7], the average
number of Mn3+ (or Mn4+) ions surrounding a Mn4+ (or
Mn3+) is γ1 = (1 − x)Z (or γ2 = x Z ). Here x is the relative

Table 1. Values for the critical temperatures Tc. Here � and T m
c are

the measured values of the Curie constant and the critical
temperature in [13].

Compound � (K) T m
c (K) Tc (K)

La0.67Ca0.33MnO3 368 260 286
Pr0.67Sr0.33MnO3 470 376 366
La0.67Sr0.33MnO3 350 295 272

Table 2. Values of the susceptibility for La0.67Ca0.33MnO3 at
temperatures T = 450 and T = 530, respectively. The unit for the
susceptibility is emu mol−1.

Temperature, T
(K) Our work WMFA Ref. [13] Ref. [8]

450 0.015 0.032 0.023(5) 0.166
530 0.011 0.016 0.012(3) 0.102

concentration of Mn4+ ions, and Z is the number of nearest
Mn neighbors. Then our Curie constant C and Curie–Weiss
temperature � agree with the WMFA result [13]. In the very
high-temperature limit, our results recover to the Curie–Weiss
asymptotic behavior χ = C(T − �)−1.

Using the measured values of the Curie constant �

in [13], values of the critical temperature Tc evaluated in
equation (36) are shown in table 1. Our Tcs are in approximate
coincidence with the experimental values [13]. Especially, for
La0.67Ca0.33MnO3, our Tc = 286 K approximately agrees with
the experimental values Tc = 250 K [10] and 260 K [13],
but disagrees with Tc = 1050 K which is calculated from the
quantum DE theory [8]. If the quantum DE theory includes the
lattice distortion effect [9], band-structure calculations lead to
Tc = 270 K [8].

In table 2, values of the susceptibility are listed for
La0.67Ca0.33MnO3 at temperatures T = 450 K and T =
530 K, respectively. As compared with the results of
WMFA [13, 7, 14] and [8], our results for the susceptibility are
closer to the experimental results [13]. In the high-temperature
region T � �, the zero-field susceptibility approximately
yields WMFA [13, 7, 14].

It is interesting why the rather simple Hamiltonian (1)
is expected to describe the physics of the R1−xXx MnO3

materials correctly. It is noticed that in CMR materials there
are two valences of Mn ions that are responsible for their
magnetism [8]. One is Mn4+ that has three localized t2g

electrons. Another is Mn3+ that also has three localized t2g

electrons and an itinerant eg electron. The motion of the
eg electron between two Mn ion neighbors generates the DE
interaction. Mn4+ is referred to as a d hole with a concentration
x in the DE system. Due to the strong Hund coupling (JH →
∞), in Mn4+ the spins of three localized t2g electrons must be
parallel and form the core spin si of magnitude 3/2 [9], and in
Mn3+ the spins of four electrons are also parallel and form the
spin Sj of magnitude 2. In this way, the hopping of an itinerant
electron, which is between nearest-neighbor Mn ions, depends
on the orientation of the ionic spins si and Sj, according to the
DE expression:

ti j = t cos(θi j/2),

4
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where θi j is the relative angle between spins si and Sj, and t is
the hopping parameter. Using the relation

cos θi j = si · Sj/(sS),

and a standard trigonometric identity for double angles we can
write the familiar DE form to be

ti j = t√
2

√
1 + si · Sj

sS
. (47)

We may then obtain the effective DE Hamiltonian

Heff =
∑

〈i, j〉

t√
2

√
1 + si · Sj

sS
c†

i c j , (48)

where c†
i (c j) is the operator which creates (destroys) the

electron with spin parallel to the localized core spin at the i th
site. In particular, if the temperature is less than the Fermi
temperature of the electrons, c†

i c j is replaced by the average
〈c†

i c j〉 [9]. In the nearest-neighbor Heisenberg model with
zero field at T � Tc, 〈si · Sj〉/(sS) 	 1, so an expansion
in si · Sj/(sS) is reasonable. This leads to the effective DE
Hamiltonian (48) being reduced to the Hamiltonian (1) if 2J =
t〈c†

i c j 〉/(2
√

2). However, in [9, 8], the interaction between the
core spin of Mn4+ and the eg spin of Mn4+ was neglected, and
only the contributions of the core spins were considered, which
may lead to the great difference between the calculated and
measured Tc.

In the paramagnetic phase, the DE arising from the
hopping of the eg electron and its associated lattice
distortion [18] is well described by the effective ferromagnetic
interaction between Mn3+–Mn4+ pairs (which is J shown in
equation (1)). This leads to our results being in agreement with
the experimental results [13, 10]. It has been observed that [13]
a divergent behavior for the measured susceptibility near Tc,
in coincidence with the dc magnetic susceptibility, reflects the
importance of the ferromagnetic coupling between Mn3+ and
Mn4+ ions. It has also been shown in the experiment and theory
that [7] the DE interaction may be well represented in terms
of the simple two site Mn3+–Mn4+ Heisenberg interaction for
doping x � 0.15. Thus, we may conclude that the nearest-
neighbor mixed-spin Heisenberg model (1) can describe the
physics of R1−xXx MnO3 materials correctly.

As the microscopic modeling of doped manganites
shows [19], CMR manganites are characterized by a
complex interplay of charge, spin, orbital, and lattice
degrees of freedom. There are several ferromagnetic and
antiferromagnetic spin exchange terms—besides the orbital
and spin affected hopping. However, in the limit of the
strong Hund coupling (JH → ∞), and averaging over the
fermion degrees of freedom, higher-order ferromagnetic and
antiferromagnetic spin exchange terms are neglected, and only
lower-order ones remain. This leads to the simplified model

H = −2
∑

〈i, j〉

(
J xsx

i Sx
j + J ys y

i Sy
j + J zsz

i Sz
j

)

− h

(
∑

i

sz
i +

∑

j

Sz
j

)
+ 2

∑

〈i,i ′ 〉
J a

i j si · si′

+ 2
∑

〈 j, j ′〉
J b

j j ′Sj · Sj′ . (49)

Here the first term accounts for the ferromagnetic DE
interaction. The anisotropic exchange interactions (J x , J y, J z)
are responsible for the contributions of the kinetic energy of
itinerant electrons, and of the anisotropic hopping between
two eg orbitals of the nearest-neighbor Mn3+–Mn4+ ions, and
of the electron–phonon interaction. The third and fourth
terms describe antiferromagnetic superexchange interaction
between the local spins of Mn4+–Mn4+ and Mn3+–Mn3+ pairs,
respectively. Within the RPA approach, we could give a
qualitative estimate of how ferromagnetic DE interaction and
antiferromagnetic superexchange interaction will influence Tc.
The magnetic DE anisotropy (if J x � J z, J y � J z) tends to
suppress the critical fluctuations, and leads to the raising of the
critical temperature Tc. However, substantial polaronic band
narrowing due to strong electron–lattice interaction can prevent
ferromagnetic order through J z , and then lead to lower Tc.
The suppression of ferromagnetic order by antiferromagnetic
superexchange interactions may reduce the calculated Tc.
Thus, if considering anisotropic exchange interactions between
Mn3+–Mn4+ pairs, and including the interactions between
Mn3+–Mn3+ and Mn4+–Mn4+ pairs in equation (49), our
results for R1−xXx MnO3 will be modified and better agree
with the experimental results. These will be discussed in future
work.
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